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Abstract Lipid binding proteins play important roles in
signaling, regulation, membrane trafficking, immune re-
sponse, lipid metabolism, and transport. Because of their
functional and sequence diversity, it is desirable to explore
additional methods for predicting lipid binding proteins
irrespective of sequence similarity. This work explores the
use of support vector machines (SVMs) as such a method.
SVM prediction systems are developed using 14,776 lipid
binding and 133,441 nonlipid binding proteins and are eval-
uated by an independent set of 6,768 lipid binding and
64,761 nonlipid binding proteins. The computed prediction
accuracy is 78.9, 79.5, 82.2, 79.5, 84.4, 76.6, 90.6, 79.0, and
89.9% for lipid degradation, lipid metabolism, lipid synthe-
sis, lipid transport, lipid binding, lipopolysaccharide biosyn-
thesis, lipoprotein, lipoyl, and all lipid binding proteins,
respectively. The accuracy for the nonmember proteins
of each class is 99.9, 99.2, 99.6, 99.8, 99.9, 99.8, 98.5,
99.9, and 97.0%, respectively. Comparable accuracies are
obtained when homologous proteins are considered as one,
or by using a different SVM kernel function. Our method
predicts 86.8% of the 76 lipid binding proteins nonhomol-
ogous to any protein in the Swiss-Prot database and 89.0%
of the 73 known lipid binding domains as lipid binding.
These findings suggest the usefulness of SVMs for facilitat-
ing the prediction of lipid binding proteins. Our software
can be accessed at the SVMProt server (http://jing.cz3.nus.
edu.sg/cgi-bin/svmprot.cgi).—Lin, H. H., L. Y. Han, H. L.
Zhang, C. J. Zheng, B. Xie, and Y. Z. Chen. Prediction of the
functional class of lipid binding proteins from sequence-
derived properties irrespective of sequence similarity. J.
Lipid Res. 2006. 47: 824–831.
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Lipid binding proteins play important roles in cell sig-
naling and membrane trafficking (1), lipid metabolism
and transport (2, 3), innate immune responses to bacterial

infections (4), and the regulation of gene expression and
cell growth (5). Prediction of the functional roles of lipid
binding proteins is important for facilitating the study
of various biological processes and the search for new
therapeutic targets. Intensive efforts have been directed
at the study of the genetics of lipid binding (3, 5) and
the molecular mechanism of lipid-protein interactions,
which provide useful clues about sequence features, struc-
tural characteristics, domains, physicochemical proper-
ties, and kinetic data related to lipid binding and
metabolism (6–13), which can be explored for developing
methods to predict the function of lipid binding proteins.

At present, prediction of the function of lipid binding
proteins is primarily based on sequence similarity and
clustering methods (14) and the identification of se-
quence signals and motifs (15–19). It is known that many
genomes contain substantial percentages of the putative
protein-coding open reading frames, which are non-
homologous to any protein of known function (20, 21).
Therefore, it is desirable to explore additional methods
that predict protein function irrespective of sequence
similarity. A statistical learning method, the use of support
vector machines (SVMs), has been used successfully to
predict the functional classes of molecule binding pro-
teins such as RNA binding proteins (22, 23), DNA binding
proteins (23), and transporters (24) irrespective of se-
quence similarity from sequence-derived structural and
physicochemical properties. SVMs also showed a certain
level of capability for predicting novel proteins that have
no known similarity to any other proteins (25, 26). It is
thus of interest to explore SVMs to predict the functional
classes of lipid binding proteins.

Lipid binding proteins are diverse in sequence, structure,
and function (6–13). Nontheless, lipid recognition by pro-
teins is primarily mediated by some combination of a num-
ber of structural and physicochemical features, including
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conserved fold elements (5), specific lipid binding site ar-
chitectures (6) and recognition motifs (7, 13), ordered hy-
drophobic and polar contacts between lipid and protein
(8), and multiple noncovalent interactions from protein
residues to lipid head groups and hydrophobic tails (13).
To some extent, these lipid-protein binding features are
similar to those of other molecule binding features of pro-
teins, such as RNA binding proteins, DNA binding proteins,
and transporters. For instance, RNA binding proteins are
also diverse in sequence, structure, and function, and their
binding capabilities are mediated by certain classes of RNA
binding domains and motifs (27–30). Therefore, it is ex-
pected that SVMs are also applicable to the prediction of
the functional classes of lipid binding proteins.

Here, we explore the use of SVMs for developing pre-
diction systems for eight lipid binding classes and for all
lipid binding proteins. These classes are lipid degradation,
lipid metabolism, lipid synthesis, lipid transport, lipid
binding, lipopolysaccharide biosynthesis, lipoprotein
(proteins posttranslationally modified by the attachment
of at least one lipid or fatty acid, such as farnesyl, pal-
mitate, and myristate), and lipoyl (proteins containing at
least one lipoyl binding domain). In addition to the esti-
mate of prediction accuracy using an independent set of
proteins, the performance of our developed SVM predic-
tion systems is further evaluated by four additional tests to
determine the usefulness of SVMs to predict novel lipid
binding proteins and the applicability of other kernel
functions. One is the evaluation of the prediction accu-
racies when homologous proteins are considered as one.
The second is the prediction of lipid binding proteins
nonhomologous to any protein in the Swiss-Prot database
(31). The third is to study whether the known lipid
binding domains can be predicted as lipid binding by our
SVM systems. The fourth is to study the performance of
SVMs with a different kernel function.

METHODS

Selection of lipid binding and nonlipid binding proteins

All lipid binding proteins used in this study are from a com-
prehensive search of the Swiss-Prot database at http://www.
expasy.uniprot.org (31). A total of 10,815 lipid binding protein
sequences are obtained. The distribution of most of these pro-
teins in specific lipid binding classes is 873, 659, 2,383, 341, 607,
565, 5,097, and 204 in the lipid degradation, lipid metabolism,
lipid synthesis, lipid transport, lipid binding, lipopolysaccharide
biosynthesis, lipoprotein, and lipoyl classes, respectively. Some
proteins are found to belong to more than one class. The dis-
tribution of all these proteins in different kingdoms and in the
top 10 host species is given in Table 1, and that of some classes of
lipid binding proteins is given in Table 2. From these two tables,
one finds that these proteins are from a diverse range of species
and that all species appear to be fairly adequately represented.

It is likely that not all of the identified lipid binding protein
sequences that belong to each of these eight lipid binding classes
are explicitly specified in the protein sequence database. Effort
is made to manually check all of the selected lipid binding pro-
tein sequences to determine whether or not some of them belong
to a specific class. It is expected that some of these proteins
may still be missed and thus are not included in their respec-
tive classes.

All distinct members in each class are used to construct a
positive data set for the corresponding SVM classification system.
A negative data set, representing nonclass members, is selected
by a well-established procedure (26, 32, 33), such that all proteins
are grouped into domain families (34) and the representative
proteins of those families unrelated to the specific lipid binding
class are used as negative samples. Members in the other lipid
binding classes are included in the negative data set if they are
unrelated to the class being studied. These data sets are divided
into separate training, testing, and independent evaluation sets
in such a way that all of the distinct proteins, the remaining
distinct proteins, and the rest are distributed in the training,
testing, and independent evaluation sets, respectively. Statistical
data for the members and nonmembers in each data set of each
lipid binding class are given in Table 3.

TABLE 1. Distribution of lipid binding proteins in different kingdoms and in the top 10 host species of each kingdom

Kingdom

Variable Viridae Eukaryota Bacteria Archaea

Number of proteins in
kingdom

837 5,560 4,183 235

Top 10 species and
number of proteins

Autographa californica nuclear
polyhedrosis virus (12)

Homo sapiens (758) Escherichia coli (254) Methanococcus jannaschii
(73)

in each species Variola virus (6) Mus musculus (622) Haemophilus influenzae (117) Archaeoglobus fulgidus (32)
Vaccinia virus (strain

Copenhagen) (6)
Rattus norvegicus (373) Salmonella typhimurium (106) Pyrococcus horikoshii (14)

Vaccinia virus (strain Western
Reserve/WR) (6)

Arabidopsis thaliana
(197)

Bacillus subtilis (100) Aeropyrum pernix (11)

Orgyia pseudotsugata multicapsid
polyhedrosis virus (4)

Bos taurus (189) Mycobacterium bovis (77) Pyrococcus abyssi (11)

Reovirus type 3 (strain
Dearing) (4)

Saccharomyces cerevisiae
(186)

Mycobacteriumtuberculosis (74) Sulfolobus solfataricus (9)

Vaccinia virus (strain Ankara) (4) Gallus gallus (105) Escherichia coli O157:H7 (70) Pyrococcus furiosus (8)
Reovirus type 2 (strain

D5/Jones) (4)
Caenorhabditis elegans

(100)
Mycoplasma pneumoniae (70) Methanobacterium

thermoautotrophicum (8)
Human immunodeficiency virus

type 2 (isolate CAM2) (3)
Sus scrofa (93) Shigella flexneri (63) Methanosarcina mazei (8)

Human immunodeficiency virus
type 1 (isolate PV22) (3)

Canis familiaris (89) Vibrio cholerae (54) Thermoplasma acidophilum
(7)
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Derivation of structural and physicochemical properties
from protein sequence

Construction of the feature vector for each protein is based on
the formulae used in the prediction of RNA binding proteins
(33), protein-protein interaction (35), protein fold recognition
(36), and protein functional family prediction (32). Given the
sequence of a protein, its amino acid composition and the prop-
erties of every constituent amino acid are computed and then
used to generate this vector. The computed amino acid prop-
erties include hydrophobicity, normalized Van der Waals volume,
polarity, polarizability, charge, surface tension, secondary struc-
ture, and solvent accessibility (32).

For each of these properties, amino acids are divided into
three groups such that those in a particular group are regarded
to have approximately the same property. For instance, amino
acids can be divided into hydrophobic (CVLIMFW), neutral
(GASTPHY), and polar (RKEDQN) groups. Three descriptors,
composition (C), transition (T), and distribution (D), are intro-
duced to describe the global composition of each of these prop-
erties. C is the number of amino acids of a particular property
(such as hydrophobicity) divided by the total number of amino
acids in a protein sequence. T characterizes the percentage
frequency with which amino acids of a particular property are
followed by amino acids of a different property. D measures the

chain length within which the first, 25, 50, 75, and 100% of the
amino acids of a particular property are located.

A hypothetical protein sequence, AEAAAEAEEAAAAAEAEEE
AAEEAEEEAAE, as shown in Fig. 1, has 16 alanines (n1 5 16)
and 14 glutamic acids (n2 5 14). The composition for these two
amino acids is n1 3 100.00/(n1 1 n2) 5 53.33 and n2 3 100.00/
(n1 1 n2) 5 46.67, respectively. There are 15 transitions from
A to E or from E to A in this sequence, and the percentage
frequency of these transitions is (15/29) 3 100.00 5 51.72. The
first, 25, 50, 75, and 100% of As are located within the first 1, 5,
12, 20, and 29 residues, respectively. The D descriptor for As is
thus 1/30 3 100.00 5 3.33, 5/30 3 100.00 5 16.67, 12/30 3

100.00 5 40.0, 20/30 3 100.00 5 66.67, and 29/30 3 100.00 5

96.67. Likewise, the D descriptor for Es is 6.67, 26.67, 60.0, 76.67,
and 100.0. Overall, the amino acid composition descriptors
for this sequence are C 5 53.33 and 46.67, T 5 51.72, and D 5

3.33, 16.67, 40.0, 66.67, 96.67, 6.67, 26.67, 60.0, 76.67, and
100.0. Descriptors for other properties can be computed by a
similar procedure.

Overall, there are 21 elements representing these three de-
scriptors: 3 for C, 3 for T, and 15 for D. The feature vector of a
protein is constructed by combining the 21 elements of all of
these properties and the 20 elements of amino acid composition
in sequential order.

TABLE 3. Statistics of the training, testing, and independent evaluation set, and prediction accuracy of individual classes of lipid binding proteins
and all lipid binding proteins

Testing Set Independent Evaluation Set

Training Set Positive Negative Positive Negative

Lipid Binding Protein Class Positive Negative TP FN TN FP TP FN SE TN FP SP Q

Lipid degradation 403 1,775 232 1 13,629 6 187 50 78.9% 7,696 5 99.9% 99.3%
Lipid metabolism 293 1,969 155 50 13,276 124 128 33 79.5% 7,632 64 99.2% 98.8%
Lipid synthesis 891 2,607 722 67 12,615 55 578 125 82.2% 7,605 30 99.6% 98.1%
Lipid transport 153 2,109 87 23 13,436 26 62 16 79.5% 7,712 15 99.8% 99.6%
Lipid binding 274 1,530 165 1 13,918 8 141 26 84.4% 7,714 10 99.9% 99.5%
Lipopolysaccharide biosynthesis 285 10,837 134 9 4,590 0 105 32 76.6% 7,710 13 99.8% 99.6%
Lipoprotein 1,648 5,065 1,724 68 8,634 199 1,501 156 90.6% 5,459 81 98.5% 96.7%
Lipoyl 72 1,987 58 12 13,529 17 49 13 79.0% 7,758 11 99.9% 99.7%
All lipid binding proteins 3,232 3,701 3,966 51 7,763 36 3,205 361 89.9% 5,086 160 97.0% 94.1%

The predicted results are given in true positive (TP), false negative (FN), true negative (TN), false positive (FP), sensitivity (SE) [5TP/(TP 1
FN)] (accuracy for class members), specificity (SP) [5TN/(TN 1 FP)] (accuracy for nonmembers), and overall accuracy (Q) [5(TN 1 TP)/
(TP 1 FN 1 TN 1 FP)]. The number of members and nonmembers in the testing and independent evaluation sets is given by TP 1 FN or
TN 1 FP, respectively.

TABLE 2. Distribution of lipid binding proteins involved in lipid transport, lipid synthesis, and lipid degradation in different kingdoms and in the
top 10 host species

Lipid Transport Lipid Synthesis Lipid Degradation

Variable Kingdom or Species
No. of

Proteins Kingdom or Species
No. of

Proteins Kingdom or Species
No. of

Proteins

Protein distribution
in kingdom

Archaea — Archaea 63 Archaea 10

Bacteria 53 Bacteria 1,447 Bacteria 301
Eukaryota 288 Eukaryota 842 Eukaryota 562
Viridae — Viridae 31 Viridae —

Protein distribution
in top 10 species

Homo sapiens 50 Homo sapiens 81 Homo sapiens 47

Mus musculus 34 Mus musculus 71 Mus musculus 40
Rattus norvegicus 18 Arabidopsis thaliana 66 Rattus norvegicus 34
Bos taurus 12 Rattus norvegicus 52 Austrelaps superbus 19
Sus scrofa 10 Saccharomyces cerevisiae 42 Bos taurus 17
Oryctolagus cuniculus 9 Escherichia coli 29 Candida albicans 15
Gallus gallus 8 Schizosaccharomyces pombe 28 Saccharomyces cerevisiae 15
Macaca fascicularis 8 Oryza sativa 25 Arabidopsis thaliana 14
Saccharomyces cerevisiae 8 Salmonella typhimurium 21 Laticauda semifasciata 12
Canis familiaris 6 Haemophilus influenzae 20 Bungarus multicinctus 12
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There is some level of overlap in the descriptors for hydro-
phobicity, polarity, and surface tension. Thus, the dimensionality
of the feature vectors may be reduced by principal component
analysis. Our own study suggests that the use of principal com-
ponent analysis-reduced feature vectors only moderately im-
proves the accuracy for some of the families. Thus, it is unclear to
what extent this overlap affects the accuracy of SVM classification.
It is noted that reasonably accurate results have been obtained
using these overlapping descriptors in various protein classifica-
tion studies (32, 35–38).

SVM method

The algorithms of SVM and its applications to proteins are
extensively described in the literature (32, 33, 39). Thus, only a
brief description is given here. A linear SVM constructs a hyper-
plane that separates two different classes of feature vectors with a
maximum margin. One class represents lipid binding proteins,
and the other represents nonlipid binding proteins. This hyper-
plane is constructed by finding a vector w and a parameter b that
minimizes OwO2, which satisfies the following conditions: w 3

xi 1 b$ +1, for yi 511 (positive class), and w 3 xi 1 b#21, for yi

5 21 (negative class). Here, xi is a feature vector, yi is the group
index, w is a vector normal to the hyperplane, |b | / OwO is the
perpendicular distance from the hyperplane to the origin, and
OwO2 is the Euclidean norm of w.

A nonlinear SVM projects feature vectors into a high-
dimensional feature space using a kernel function such as the
Gaussian kernel function K(xi, xj) 5 e2|xj 2 xi|2/2s2. The linear
SVM procedure is then applied to the feature vectors in this
feature space. After the determination of w and b, a given vector x
can be classified using sign[(w 3 x) 1 b]; a positive or negative
value indicates that the vector x belongs to the positive or nega-
tive class, respectively.

The performance of SVM has been measured by the positive,
negative, and overall prediction accuracies Pp 5 TP/(TP 1 FN),
Pn5TN/(TN1 FP), and P5 (TP1TN)/N, which correspond to
the accuracies for proteins of a lipid binding class, nonmembers
of the class, and all members and nonmembers of the class,
respectively. Here, TP, TN, FP, and FN are the number of true
positives (true member), true negatives (true nonmember), false
positives (false member), and false negatives (false nonmember),
respectively, and N is the total number of proteins studied.

RESULTS AND DISCUSSION

Overall prediction accuracy

The statistics of the data sets and prediction results for
specific lipid binding classes and all lipid binding proteins

are given in Table 3. In this table, TP, FN, TN, FP, SE, and
SP stand for true positive (correctly predicted lipid bind-
ing proteins of a specific class), false negative (specific
class of lipid binding proteins incorrectly predicted as
nonclass members), true negative (correctly predicted
nonclass members), false positive (nonclass members in-
correctly predicted as a specific class of lipid binding
proteins), predicted sensitivity (accuracy for members
in each lipid binding class), and predicted specificity
(accuracy for nonmembers of each lipid binding class),
respectively. The SEs for the lipid degradation, lipid
metabolism, lipid synthesis, lipid transport, lipid binding,
lipopolysaccharide biosynthesis, lipoprotein, lipoyl, and
all lipid binding proteins are 78.9, 79.5, 82.2, 79.5, 84.4,
76.6, 90.6, 79.0, and 89.9%, respectively. The corre-
sponding SPs are 99.9, 99.2, 99.6, 99.8, 99.9, 99.8, 98.5,
99.9, and 97.0%, respectively. When homologous proteins
are considered as one, the SEs become 76.9, 77.9, 80.9,
79.7, 83.1, 74.2, 90.4, 78.6, and 89.8% and the SPs become
99.9, 99.1, 99.6, 99.8, 99.9, 99.8, 98.6, 99.9, and 96.9%,
respectively. Overall, the SEs are reduced slightly and the
SPs are almost unchanged compared with the results de-
rived from the use of all proteins.

A direct comparison with results from previous lipid
binding protein prediction studies may not be most ap-
propriate because of the differences in the protein
classes predicted, data sets, protein descriptors, prediction
methods, and parameters. Nonetheless, a tentative com-
parison may provide some crude estimate regarding the
level of accuracy of our method with respect to those
achieved by other studies of lipid binding proteins.
The reported SEs and SPs of other studies are in the
range of 92z97% and z99% for the lipoprotein pro-
teins (17, 18) and 80z95% and 99.2z99.9% for lipid
modification proteins (16). Although our results are com-
parable to those of other studies, a significantly higher
number, and thus more diverse range, of proteins is cov-
ered in our studies.

The prediction accuracy of the nonmembers of each
lipid binding class appears to be better than that of the
members. The higher prediction accuracy for nonmem-
bers likely results from the availability of a more diverse set
of nonmembers than that of members, which enables the
SVM to perform a better statistical learning for recognition
of nonmembers. Based on the statistics provided on the

Fig. 1. Sequence of a hypothetic protein for illustration of the derivation of the feature vector of a protein.
The sequence index indicates the position of an amino acid in the sequence. The index for each type of
amino acids in the sequence (A or E) indicates the position of the first, second, third … of that type of amino
acid (the position of the first, second, third… A is at 1, 3, 4…). A/E transition indicates the positions of AE
or EA pairs in the sequence.

Prediction of lipid-protein interactions 827
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Pfam database webpage (34), there are .7,000 families of
proteins, from which one can generate a diverse set of
nonmembers for each DNA binding class.

Because of differences in the numbers of members and
nonmembers in each class, there is an imbalance between
each data set. SVMs based on imbalanced data sets tend to
produce feature vectors that push the hyperplane toward
the side with the smaller number of data (40), which can
lead to reduced accuracy for the set with either a smaller
number of samples or less diversity. This might partly ex-
plain why the prediction accuracy for members is generally
lower than that for nonmembers. However, it is inappro-
priate to simply reduce the number of nonmembers to
artificially match that of members, because this com-
promises the diversity needed to fully represent all non-
members. Computational methods for readjusting the
biased shift of the hyperplane are being explored (41).
Application of these methods may help to improve SVM
prediction accuracy in this and other cases involving un-
balanced data.

Prediction of novel lipid binding proteins

One particular application of our SVM classification
systems is for the prediction of novel lipid binding pro-
teins that are nonhomologous to other proteins. To test
this capability, the Swiss-Prot database (31) is searched for
lipid binding proteins having no single homologous
protein in the database based on PSI-BLAST (14) results.
A similarity E-value threshold of 0.1 is used for the homo-
log search to ensure the maximum exclusion of proteins
that have a homolog. Those proteins found in the SVM
training sets are then removed. As shown in Table 4,
76 proteins are found by this process, and 66 or 86.8% of
these proteins are correctly predicted as lipid binding by
our SVM classification systems. Therefore, our SVM classi-
fication systems appear to show reasonably good capability

for predicting novel lipid binding proteins based on the
set of proteins tested.

Prediction of proteins with specific
structural characteristics

A number of lipid binding proteins contain lipid bind-
ing domains or motifs (7). Several families of such lipid
binding proteins have been documented, and examples of
these families are TIM, PP binding, and GCV_H. These
families have distinctive structural features responsible for
lipid recognition and binding. Thus, the performance of
SVM classification of lipid binding proteins can be evalu-
ated by examining whether or not proteins containing one
of these domains or motifs can be correctly classified as
lipid binding proteins.

A search of protein family and sequence databases
shows that there are 227, 184, and 139 lipid binding pro-
tein sequences known to contain the TIM, PP binding, and
GCV_H domains, respectively. The majority of these se-
quences are included in the training and testing set of all
DNA binding proteins. In the corresponding independent
evaluation set, there are 81, 27, and 30 sequences con-
taining the TIM, PP binding, and GCV_H domains, re-
spectively. Most of these protein sequences are correctly
classified as lipid binding by SVMs. There are only one,
one, and two misclassified sequences in the TIM, PP bind-
ing, and GCV_H domain families, respectively. Thus, our
results show the capability of our SVM prediction systems
for recognizing these lipid binding proteins. The incor-
rectly predicted protein sequences are triosephosphate
isomerase (fragment), putative acyl carrier protein, mito-
chondrial precursor, glycine cleavage system H pro-
tein, mitochondrial precursor (fragment), and probable
glycine cleavage system H protein 2, mitochondrial pre-
cursor. Most of these incorrectly predicted sequences are
fragments. Therefore, sequence incompleteness appears

TABLE 4. Prediction results of novel lipid binding proteins by SVMProt, where 1 represents proteins correctly
predicted as lipid binding proteins and 2 represents proteins incorrectly predicted as nonlipid binding proteins

Swiss-Prot AC
Prediction

Status Swiss-Prot AC
Prediction

Status Swiss-Prot AC
Prediction

Status Swiss-Prot AC
Prediction

Status

O13547 1 P16055 1 P39907 1 P77339 1
O15255 1 P18149 1 P39910 1 P77717 1

O32528 1 P18164 1 P41052 1 P83408 2
O59715 1 P18952 2 P41069 2 P97029 1
O66867 1 P19411 1 P41365 1 Q01821 1
O67301 1 P19412 1 P42461 1 Q03490 1
O67672 1 P19478 1 P42708 1 Q05903 1
O83276 2 P19833 1 P43497 1 Q08906 1
O83469 1 P25666 1 P46122 1 Q46122 1

O83516 1 P26471 2 P54660 1 Q46670 1
O83691 2 P27126 1 P55428 1 Q46835 1
O83811 1 P27832 1 P55703 1 Q47499 1
P07096 1 P29723 1 P65302 1 Q50675 1
P08452 1 P32323 1 P65310 1 Q53728 2
P08472 1 P33219 1 P65316 2 Q54313 1

P0A0V1 1 P37056 2 P70837 2 Q56032 1
P0A1X3 1 P37261 1 P75734 1 Q94BT2 1
P11910 1 P37748 1 P75737 1 Q9CJU4 1
P12729 1 P38371 1 P75818 1 Q9CLP1 1

AC, accession number.
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to be a factor that partially contributes to the incorrect
prediction of these sequences by SVMs.

Prediction performance for lipid binding domains

Some lipid binding proteins are known to contain mul-
tiple domains that include a lipid binding domain plus
one or more domains characterized by DNA binding,
protein-protein interaction, and other motifs (42–45).
Our SVM prediction systems are trained using physico-
chemical properties derived from the entire protein se-
quence. There is a need to evaluate how the inclusion of
all of these other “extra” domains may affect the predic-
tion performance of our SVM systems. For such a purpose,
our SVM systems are tested to determine to what extent
they can predict known lipid binding domains as lipid
binding without having to include representatives of these
domains in our training sets. Lipid binding domains are
searched from the Pfam database (34) using key word
“lipid” against the Pfam, Prosite, and UniProt databases,
followed by manual evaluation of the hits to select those
with such annotations as involvement in lipid synthesizing,
transporting, metabolizing, transferring, and degrading,
interaction with lipid, and lipoprotein. A total of 73 dis-
tinct lipid binding domains are selected from this process,
which include 23 domains in multidomain lipid bind-
ing proteins. We found that 89.0% and 82.6% of these
are predicted as lipid binding. Moreover, 87.2% of the
632 multidomain lipid binding proteins in our indepen-
dent set are correctly predicted. Hence, the inclusion of
extra domains appears to have a limited effect on the
performance of our developed SVM systems, which show a
certain level of capability to predict lipid binding domains
as well as lipid binding proteins.

SVM prediction performance using a different
kernel function

Apart from the Gaussian kernel function of sequence-
derived physicochemical properties used in this work,
several other kernel functions have been developed and
applied for SVM analysis of proteins and DNAs (46–54). It
is of interest to test the usefulness of some of these kernel
functions for predicting lipid binding proteins. The string-
kernel function has been used extensively and has shown
promising potential for protein and DNA studies (46, 47).
This kernel function is constructed by comparison of se-
quences of classes of proteins or DNAs and the assignment
of individual weights to amino acids or nucleotides to de-
scribe physicochemical or other characteristics of the
proteins and DNAs. In this work, this kernel function is
used to develop three SVM systems to predict the lipid
degradation, lipid metabolism, and lipid synthesis protein
classes. Spectrum kernel with mismatches (53) is used to
generate the string-kernel for each protein. Testing results
using the independent set of proteins for each class
show that the SEs are 77.2, 75.8, and 77.8% and the SPs
are 97.6, 96.4, and 94.2% for each of these classes, respec-
tively. Thus, comparable prediction performance can be
achieved using string-kernel SVMs, which suggests the

usefulness of this and other kernel functions for SVM
prediction of lipid binding proteins.

Contribution of feature properties to the classification of
lipid binding proteins

In this work, nine feature properties are used to de-
scribe physicochemical characteristics of each protein,
which have been used routinely for the prediction of RNA
binding proteins (55) and other proteins (32, 35–38). It
has been reported that not all feature vectors contribute
equally to the classification of proteins; some have been
found to play relatively more prominent roles than
others in specific aspects of proteins (36). Therefore, it
is of interest to examine which feature properties play
more prominent roles in the classification of lipid bind-
ing proteins.

In an earlier study, the contributions of individual fea-
ture properties to protein classification were investigated
by separately conducting classification using each feature
property (36). The same method was used here. An analy-
sis of the classification of the group of all lipid binding
proteins suggests that, in order of prominence, polarity,
hydrophobicity, amino acid composition, and solvent ac-
cessibility play more prominent roles than other feature
properties. Polarity and hydrophobicity have been shown
to be important for lipid-protein interactions, such that
lipid binding sites are located in a hydrophobic and low-
polarity environment (56). High-affinity lipid binding sites
in some proteins appear to be located at sequence seg-
ments with specific amino acid composition (57), and
specific sequence motifs have been used to predict lipid
binding proteins (15–19). A study of apolipophorin III in
lipid-free and phospholipid-bound states showed that lipid
binding involves increased solvent accessibility, as a result
of gross tertiary structural reorganization (58). Therefore,
our prediction results are consistent with these experi-
mental findings.

Conclusion

SVMs appear to be potentially useful tools for the pre-
diction of lipid binding proteins of different classes.
The prediction accuracy may be further enhanced with
the expansion of our knowledge about lipid binding pro-
teins, particularly for those small lipid binding classes,
more refined representation of the structural and physi-
cochemical properties of proteins, and the improve-
ment of prediction algorithms, such as better treatment
of an imbalanced data set. The SVM-derived lipid bind-
ing protein classification systems developed in this
work can be accessed, free of charge for academic use,
at the SVMProt server http://jing.cz3.nus.edu.sg/cgi-bin/
svmprot.cgi.
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